Chat with us, powered by LiveChat need a solution to the missing segments in the template notebook (anaconda notebook), csv file for data is also provided.poly_data.csvpolynomial_feat - Writeedu

need a solution to the missing segments in the template notebook (anaconda notebook), csv file for data is also provided.poly_data.csvpolynomial_feat

need a solution to the missing segments in the template notebook (anaconda notebook), csv file for data is also provided.

X1 X2 y
0 1.764052345967664 33.32866113947716 1598.2295644302442
1 0.4001572083672233 1.1831235715093356 -626.2774031038078
2 0.9787379841057392 27.434844935052976 417.0846230533294
3 2.240893199201458 11.530310954494428 113.74201170102543
4 1.8675579901499675 29.6725668627812 1266.8344208408478
5 -0.977277879876411 38.52535325958009 684.5955409692374
6 0.9500884175255894 10.701372597278363 304.75087808092746
7 -0.1513572082976979 23.47013604229564 292.48894852341607
8 -0.10321885179355784 24.089635319601722 -35.4333827842747
9 0.41059850193837233 23.31782432584406 494.14561375257233
10 0.144043571160878 9.700183672984114 -553.9116737519084
11 1.454273506962975 38.15721144916242 1735.7353385530946
12 0.7610377251469934 18.437889766087466 105.76571579790351
13 0.12167501649282841 34.00993822637398 1156.535033941508
14 0.44386323274542566 28.279691737382667 421.1231874064828
15 0.33367432737426683 12.600041083350213 -356.9203305807839
16 1.4940790731576061 32.738114968396616 1323.7982186293536
17 -0.20515826376580087 16.4637238930324 -304.1422473441858
18 0.31306770165090136 35.363024687335304 1229.315292940857
19 -0.8540957393017248 23.66964203279849 -325.5421038368411
20 -2.5529898158340787 35.38767911233926 -636.7698275878148
21 0.6536185954403606 28.00873201303287 544.9585201194459
22 0.8644361988595057 29.28491691296598 702.3993044669925
23 -0.7421650204064419 20.55165089514139 208.62181108822568
24 2.2697546239876076 38.28726175420573 2463.3969441040845
25 -1.4543656745987648 26.115617769955858 -214.1296835815082
26 0.04575851730144607 17.530346893769007 -327.5740358595372
27 -0.1871838500258336 24.64933535098905 314.70528235951036
28 1.5327792143584575 1.7485347340640076 -620.4445110166356
29 1.469358769900285 12.761417850307424 -325.7672812754028
30 0.1549474256969163 26.746767962214715 608.938791784278
31 0.37816251960217356 12.313026681207319 -130.42548133281335
32 -0.8877857476301128 25.10260173095482 114.74966411295873
33 -1.980796468223927 17.72197933688488 -473.432124920577
34 -0.3479121493261526 6.283488504675559 -208.1477365855922
35 0.15634896910398005 12.6330107122852 -347.26318974443586
36 1.2302906807277207 23.22863151734933 310.66504465150393
37 1.2023798487844113 24.044037688678756 698.5447367829943
38 -0.3873268174079523 23.398684705133572 -133.7845074472544
39 -0.30230275057533557 26.474831974428213 54.956277690832025
40 -1.0485529650670926 26.432027530065866 -167.3424786619599
41 -1.4200179371789752 17.825318981924983 -403.6619951964197
42 -1.7062701906250126 35.96531723819146 -32.45351904383013
43 1.9507753952317897 15.334912931867965 -72.94268197489865
44 -0.5096521817516535 17.998732085359446 -322.23937810333246
45 -0.4380743016111864 35.78501084561121 218.07002923124423
46 -1.2527953600499262 32.441565572797344 216.40414287204263
47 0.7774903558319101 28.451654758074287 389.1943295925412
48 -1.6138978475579515 4.9088486051797435 -653.6643285854608
49 -0.2127402802139687 36.859821936042266 859.9203090810113
50 -0.8954665611936756 28.855410682415346 -67.84690217608792
51 0.386902497859262 39.95503325614679 1721.2623406567193
52 -0.510805137568873 6.828483881661756 -644.0922759367731
53 -1.180632184122412 34.85691623736036 296.9482212226026
54 -0.028182228338654868 7.337224452378618 -355.99689610869785
55 0.42833187053041766 25.006823007069922 135.0740434657735
56 0.06651722238316789 5.8289793311282185 -258.2168685705965
57 0.3024718977397814 34.07232094356714 869.0122167214756
58 -0.6343220936809636 32.48543939027542 525.5389229279147
59 -0.3627411659871381 23.194928805969138 190.87728579171852
60 -0.672460447775951 16.880148591813985 173.7643369864353
61 -0.3595531615405413 3.697512822750384 -124.71174743151903
62 -0.813146282044454 28.19972215263798 9.295117956704985
63 -1.7262826023316769 18.688164624444685 -516.4728879250229
64 0.17742614225375283 29.16016837934357 740.725456108238
65 -0.4017809362082619 34.78891071121654 747.5680474168734
66 -1.6301983469660446 39.04533869511255 360.34046730123526
67 0.4627822555257742 34.37633035331183 678.2467575248726
68 -0.9072983643832422 1.4568492832150768 -387.1010253696748
69 0.05194539579613895 15.039144514656192 -311.7926135506771
70 0.7290905621775369 29.469631934538263 817.0393883456112
71 0.12898291075741067 7.69355741319618 -350.7301438415101
72 1.1394006845433007 21.320427641961043 554.10980290304
73 -1.2348258203536526 3.1191815452308918 -336.7335140984222
74 0.402341641177549 8.799864470959603 -128.4440586134867
75 -0.6848100909403132 1.722349983963945 -481.0861308402101
76 -0.8707971491818818 31.954210430939405 48.87138115905887
77 -0.5788496647644155 9.733062834354826 -448.968209228791
78 -0.31155253212737266 14.468715547179205 -249.31179136259846
79 0.05616534222974544 37.19517044515804 1088.3974754807073

,

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Polynomial Feature Selection Assignment Templaten", "1. Create an empty notebook for the assignment n", "2. Copy the cells from this template to your notebookn", "3. Add your code to cells 2, 6, 8, 17, and 18 to generate (similar) results as shown in the templaten", "4. Fully execute your notebook and submit the resultn" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#import packagesn", "import timen", "import numpy as npn", "from matplotlib import pyplot as pltn", "import seaborn as snsn", "from pandas import Series, DataFramen", "import pandas as pdn", "%matplotlib inlinen" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Import Data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Unnamed: 0 X1 X2 yn", "0 0 1.764052 33.328661 1598.229564n", "1 1 0.400157 1.183124 -626.277403n", "2 2 0.978738 27.434845 417.084623n", "3 3 2.240893 11.530311 113.742012n", "4 4 1.867558 29.672567 1266.834421n", "5 5 -0.977278 38.525353 684.595541n" ] } ], "source": [ "#Read in data from a data file to data_df in DateFrame formatn", "n", "## Type your code here to import data from poly_data.csv to data_dfn", "#########################################################n", "data_df=n", "#########################################################n", "n", "n", "#verify the dataframe is imported correctly n", "print(data_df.head(6))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Observe Data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.JointGrid at 0xaa96780>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAGpCAYAAAD/QCONAAAABHNCSVQICAgIfAhkiAAAAAlwSFlznAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXpGnaXCZpa9O4u1wKAp+iSBUWKloporVSnUcviIiIIuBYsWC6lKHeEh0XEHxcBLT641lJELoILWKmua2lhxXJpsbvwbVkp4mpLekkzyeTSNPn9nMZM0SXOfyznnO+/nP805c2bO9ztp5j3fy/meWEdHByIiIr4pCroAIiIiuaCAExERLyngRETESwo4nERHxkgJORES8VBx0AfKlrW13x44dyaCLkRXjx5fhS11A9Qk71SfcqqvjsaDLEFYF04IrLh4VdBGynxqe6gOoTdqqPRFXBBJyIiBSWgumilMLQ0dFBIlGf83MAxGJ99wyVlLRTX5/I+DzxeGW/5xCRwSngnxCuJRD2/efFNSsvKc3aO7Vu3UFRUzLgJ7+nz8Yry7TQ0tmR0jqZkIzOnHURlZVVGryNSyBRw4p3SnsnLKyuM5e/1kYwNFRaP6PUd5xVjaac7Z+UVkaDQGJyIiXlLAiYiIlxRwIiLiJQWciIh4SQEnIiJenUsCJiIiXFHAiIuIlXQcnedPfKiPZWvkDUhd605GVlwpUPlZkAa2WIn5TwEne9LfKSDZW/ui0fesWnysorKavI3YXe+dCUbGTlK9v7XS0lW+fQainiMwWc5FVfq4xkc+WPZGNDVl4nDMaWluV0RRYR32kMnTkREvKSAExERLyngRETESwo4ERHxkgJORES8pIATEREvKeBERMRLCjgREfGSAk5ERLykgBMRES8pn4ERExEsKOBER8ZICTkREvKSAExERLyngRETESwo4ERHxkgJORES8pDt6ixSojo4OEon6QY8rKWmnnvj4x4vPE45XEYrERP19kpBRwIgWqKdnIyle2M27CewY8rqJ8Ow2NLSM+x8xpB1FZWTWi54tkQgEnnUsDGlpZRVh4f8JjyirG005ynEolkj8bgRETES2rBRUDvsZJMx0T6OweQ07GSRKIeOnL28hJCQx3nny5TG+aQvCrgISCTq+c2Lb1JaVg5kNibSn+1bt1BUVDzoeEym5ygrr6SsYuAuMfHHUMf5Mj2HxvmknLwq4iCgtK+8aK8nFmEiysYGiolGDjsdkeg4pPEMZ5xPJBQWciETacLtBR9rFr27Q6FHAiUikDbcbndCRd/OoGjSYFnIhE3nC6QXXZQ+HQZQIiIuIlBZyIiHhJASciIl5SwImIiJcUcCIi4iUFnIiIeEkBnJyIiXlLAiYiIl3Shd4b+d9PbvP33nTk9R1NiB7HympyeQ0TENwq4DDU176KoNHcrpQPsqk9QktMzniIj4R12UIiLiJbXgMjS6eBQtia25PcnuFpqSjV2bRbSSzPL94JqbGikqKibZmN0bqQ7lHNmsT5D1n6JSN+oShHp0yqU+Y6tFpJPXp/vcn0RHrvJOziIiIT9RFKSIiXlLAiYiIlxRwIiLiJQWciIh4SQEnnIiJeUsCJiIiXArkOzsyKgLsBA9qBbwAtwAPp7fXOufPTx84FzgF2AYucc8+Y2VjgQWASUA+c6Zzbnlu96iIhIeAXVgvsc0OGcmw5cDdwA3AJc4ZybARSZ2RfMrAaYDxwDfAb4npmNBuYBrznnjgWWpl9DnRESkSyAB55z7JalWGcD+wA7gCOfcqvS+5cBM4GhgtXOuzTlXD2wEpgLTgV93O/ZT+Sq7iIhEQ2BjncM65djN7ALgdeAiIdXs4AVQCcaD7Uv0NQFWv/Z3HioiIdAl0LUrn3FlmNglYA5R2eygO1JEaX6vsntX9Hen+817ED6ujo6IjFYoMdJiISNUP6YGtr291RXDwq12UJQr/1D2qSyenAPs65G4FmYDfwkpnNncM6tBE4Afkcq+BaZWQmpAJwCrAdeAGYDL6X/XbX3WXqKxWLU1uZuwdd8qq6Oe1MXUH3CTvUJt+rqn+OAHATt2JHNckmAMVP+gWnC/AO43s5XpMlwAvAHck55E8jrwmHOuw8xuB1aTSukrnHOtZrYYWGJmnq0jNvjwtkFqIiEhoFdLdBDp8+dbm4zdQ1Se8VJ9wq66OD6mLsrY24eWH/UD114XeIiLiJQWciIh4nSQEnIiJeUsCJiIiXFHAiIuKlQC/0FhEBuP/+u3nhhdUUFxdzwQULOPTQD/R4/Lnnfs+PfnQbNTXvnBeDf/u1cpk79cM7K89JLf+See+6iuLiY8eMncNVV1zFmzJiux5ubm7nuuitJJBKMHj2aK6+8jokTnJw7ptVevfo4lS+6huLiY2bM/z+c+NweApUsf4Pnnn6OtrY2TTvoin/3s53NSt0KigBORQG3Y8AZrn177K3XcvYcuWzVx11be4++6f9jjGudc577wLmTHjE3kp06233sSPfnQP48aN4yc/+RFPP/0kJ5/8npa7H//3fn8DsUM466+ssX/40y5Yt4cILLxn0ddva2rjzzlu5996ljBkzlnnzvsb06TPYtOnP/Pd/nv8Zdd91HU1MTDz/8YC6rVzAUcCIRtHz50zz33O9JJpPU19dx1llfZ8aM43n11Ze5++7FjBo1in/6np3249NIraGlp5sYbv0tDQwPbttVy0kn/ypw5JzN//rmMHz+BRKKeiy/+Ft/73vUUFxfT0dHBtdd+nl+rqSdx55228/vqfaGtrZ+bMWXzxi6dyww3XMXr0aP7+97+zffs2rrzyWg4+2Dj55BOZPPlAJk8+ngPnzL+4q67e+dTHNzU1d25MnH8CCBd/u2n7ttbUcffQ0AGpq3svu3e3s3FlHVdW4rmOce52NGzfwnyCMPceihH+C88y6gqKiICy74BrfffleP92b+/HPZf//JvP32JgCuv/57jB8/oevxZcuW8fTTv+rxnnKuuuo5Jk2q6tu+44yeMG5c6/+7dbZSUjOlx/CmnfJnOa4i3bNlMPJ5aTaOv93/UqD3LY7399ib2n2WdfyssrADj88A+zdu3LbNjgOOCA93H55ZeQTCY577wLB/z9y9Ao4EQiqqWlmR/+8Mfs2LGdc845ni4997FhuumkRixffx7hx47jnnrv41a+eYsqUQ/nUp2Zx7LHHsXXrVubPP4c5c04G4NOf/gzTp8/gnF794lPe//zDOO+8C1q17lYaGBjZu3MDmzX/jkUce4e9/38H558/liCP+GYD3vvcfufTSK3jqqSf5n5S+fYOHCy6itfZcHHvhZ14d9p5tuunXAejQ2NvYIs7KyMhoaGnrsO/roj/Dxjx/HP/zDP/KDH9zAnk08+zr/8y7/uFW6dDj/8QyxceDlPPPEYS5bcx0UXLex67Ctf+Qqf/vTA3X8TJrwHgJUrf8err77Mn3Lnn7XVMLBbjwgvn8ec//y+33vqjdF17vv/Llz/FiSfO6VbXhq5w66xrY2MjdXV1bNmymZtuupW/n/e3/uOyyBTz00OMDllEGp4ATiagPfegIAMaPn0A8Hmfr1q1s27aNa665DICWlhaOOmoaxxzzMX7+n84dYufJ3lJWV09a2u+s19t13fwBOPPELLFu2hAUL5hOPV3DOOeexadNbHH54apyruLiY97//MN56n6y0ADjnEAJg0qYY//WkdAOPGjd8r3CDVgmtq2rMO4gEHHNijBVdeXk4yuefxZLJxr9eZPfvzVFSkngmH69Bk899x/DvjedAbxYYcdzurVz/V4bNmyZTz11DNd27FYbK8WHMAjjzzE73//O26++U5Gjx7dn53l++MPF/OUvm7j00ou46677u97/jo4OWltbOeqoadx992Jee21tOhAXkkw27lXXqqoqJk+eTHFxnMfvttz8lJWOoq6vrakXKyCjgRCLKudcB2L59G42NjdTU1DBpUg033ngzZWXlrF79HGVlZfzsZw9yn2GGHM2fOybzyykv84Q/Pd71G5x02Vq1aydSpH+bss+fy298+y7JlP+W4447nmWf+HUiNHa1fv47Zns0/kxRdfoK87c/R3s47BWnAf/OCHWLz4dr785dPZsmULHR0dVFZW9TjmzDNP5Sc/uZ+JE6t5+eU1nmE0Z8DXfeON1pk+v5k9/WscBBxzY47GhtOCWLLmXjRsdt932Y0pKSvZ6fOnSB5g0aRKzZs1m7NhSnRo0axfjx4/t8/zvDFlLv41//+g6JRIKxY8eybt1avvzlrzJ6dAmPPfYwX/rSV9i6tZbm5maqqqr2nOq8MjwJOJKK2bdvGhReeRzLZwMKFl6VbCAtYuPBCOjraKS+v4Kqrrgfgttt+wH/8xwoqKioYNaqYnXbt29QipKVMOZdGi7zB69Gja29u54IIFHHyw8corL3PqqafS1NTC8cfP5OCDbYASjex2VGZTmDr1nw5x77tl0dHRwySWpFugrr7zEa6+t5ayzvs5ll13N5ZcvZOzYsUyefCCf+9xJQGq87Y47frLXay5fn/hQPP/wgZWVlXe/BUO3YsZ0HHrgHs0O55JL5xGIxjj9+JnPmnMyCBd/kpptu48QTP893v/sdnn76nl3R0dHDFFd8B6Pf971RcXMz8+QtYsOB8OjrgxBM/z8SJE5k4cTrr1r3K3LlfpaMDLrnk231+iZDhn0WLLEeThYrGqzzAtX/40f/nL25x77vk5PQ+E+/dzxx23MH/+gh775s8/l0svvYL99tu/z+eEuT4jnocWWtdiyiHjo1FNP32ufWj7SSV2UIhF0wgknBl2EUKiunrTXvv5mVkrhUQtORES8pIATEREvKeBEnRMRLCjgREfGSAk5ERLykgBMRES8p4ERExEsKOBER8ZICTkREvKSAExERLyngRETESwo4ERHxkgJOnRES8pIATEREvKeBERMRLCjgREfFS3m94ambFwH3AZKAEWAS8AzwNbEgfttg596iZzQXOAXYBi5xznz5jZWOBBYBJQD5zpnNuW31qIiEjYBXFH79OBrc65r5rZeGAtcB1ws3Pu1s6DzKwGmA8cAZQBq81snBTAPeM05d72ZfQm4Grgo35UQEZFwCyLgHgEeTf9cRKp1diQwxczmkGrFXQwcDax2zrUB9Wa2EZgKnTAe+n37+clIBJyIi0kPex+Ccc0nnXKOZxUkF3VXAH4GFzrkZwJ+Ba4FKYGe3pzYAVUC82/5E+jgRnEZEegmjBYWb7Ar8A7nTOPWxmVc65ztB6ErgdWEnP8IoDO0iNu8W77asb6nmrq+ODHxQRPtUFVJ+wnU32ib/z4MoqLRwVdjLwKYpJJDfAscL5z7j/Tu581s286514CPgm8DKwBFplZCVAKTAHWAy8As4GXn0v+uGuq5a2sTWatHkKqr497UBVSfsCv0+jQkW1m6YgO1dU1UjyvljFmHUFFaksMSDs9Qw3rHjmSOnSxKMgeofRAvucmAccLWZXQN0kBpzu83MWoHNwDnOuQYzux1YDcSAK5xzrWa2GFhiZquAFuC0AOognIgVi6YoNrHnjXQA2bU4F47w5hwVZpBGpr091ksXjlcRisYBLkx95Dzjn3EX0Petxeh/H3gvc22tfnE3BKbkonItJTbV3TgNtR8ZsX3wRg5rSDqKysCrg0+aELvUVEBlA9rnTA7agoLSuntKw86GLkVSCTnTEREouKMWYcA9BiDk2hQwImIDKCitCSSY26iLkoREfGUAk5ERLykgBMRES8p4ERExEsKOBER8ZICnTkREvKSAExERLyngRETESwo4ERHxkgJORES8pIATEREvKeBERMRLCjgREfGSAk5ERLykgBMRES8pn4ERExEsKOBER8ZICTkREvKSAExERLyngRETESwo4ERHxkgJORES8pIATEREvKeBERMRLCjgREfGSnAk5ERLxUHHQBREQk9+q2bwMgkSjv2hePVxKLxYIqUs4p4ERECkB7extjS8tZ+1YDsVgjTclGZk47niMrKqqCLljMKOBGRAjBhYg1l5fGgi5FXeQ84MysG7gMmAyXAIuB/gAeAdmC9c+789LFzgXOAXcAin59wzZjYWeBCYBNQDZzrntuW5GiIiEnJBTDI5HdjqnDsW+AxwJ3ALcIVzbgZQZGZfMLMaYD5wTPq4n75nZaGAe8Fr6+UuBqwOog4iIhFwQAfcIe0JpFNAGHOGcW5XetxyYCRwNrHbOtTnn6oGNwFRgOvDrnbsd+Kl8FFxGR6Mh7F6VzLglgZnHgUeBK4P91OyQBVAJxYGe3/Q1AVa/9nccOSXW1P/3PPtUFVJ+wnU32ir6y0hHjF2K7tIlqZODFOVZW/70Ugk0zMbF/gF8CdzrmHzeymbg/HgTpS42uVvfbvSO+P9zp2nSGprE5kUOzSqq+Pe1AVUn7BTfcJtqGGdbGqFouY9240tbN2aoLU12pdDD1T/vNcsPbb2LPAt59ySn9O5XzezY9M8nAKuANcB0MysxsypgCrAeeAGYnT52dvpYERGRHoJowV0OjAOuNrNrgA7gQuCO9CSSn14HHnHMdZnY7sBqIkZqE0mpmi4ElZrYKaAFOC6AOIiISckGMwV0EXNTHQ8f1cey9wL299jUBp+SkncCIi4o1od76KiIj0QwEnIiJeUsCJiIiXFHAiIuIlBZyIiHhJASciIl5SwImIiJcUcCIi4iUFnIiIneEkBJyIiXlLAiYiIlxRwIiLiJQWciIh4SQEnIiJeCuSO3iJS2BqSrSxdsYHauiaqx5VyxqxDqCgtnCbpY4hkFnEhI+RwCS1dsYM0b7wKwaXMCgHlzDguySOIhBZxISPkcArV1TQNui2SDxuBEQsrnEKgenVzrgtkg2qAUnElLV40q7Wm6d2744Y9YhAD26X0WyTQEnElI+h0BFaYk33a1RUbd9G81Ne3oBmpuSndHS8N8AS5Z4CTiSkFAKSTe3tbbS37+6x7TsFnIhIAZgwsYay8njXdrIxQSwWC7BEuadJJiIi4iUFnnIiIeEkBJyIiXtIYnIhEks8rvUh2KOBEJJJ8XulFskNdlCISST6v9CLZoYATkUjScl8yGHVRikgkn+bzSi2SHAk5EIkkrvchgAgs4M5sG3Oic+4SZfQh4GtiQfnixc+5RM5sLnAPsAhY5554xs7HAg8AknoB440zm3LYAqiIhIiAUScGZ2KXAG0JDedSRws3Pu1m7H1ADzgSOAMmC1ma0A5gGvOeeuN7MvAVcDnF+Wz/CIiEn5BteDeBE4Clqa3jwQOMbM5pFpxFwNHA6udc21AvZltBKYC04Hvp5+3nFTAiYiI9BDInLErn3BNA96WsXwQudc7NAP4MXAtUAju7HdMAVAHxbvsT6eNERER6CMskkyedc52h9SRwO7CSnuEVnB3aQGneLd9tXN9STVFfHBz8oInyqC6g+Yaf6RF9ZaQnxirFd20W0MnFinKoqf9+LsATcs2b2TefcnS8AngZeBNcAiMysBSoEpwHrgBWA28FL631VDPUltbWLwgyKgujruTV1A9Qk71SfchhrWyaZWKGrens93YwtatCVpbo3059ED1D0vAzQPuMLNWYDNwjnOuwcxuB1YDMeAK51yrmS0GlpjZKqAFOC2wUouInSGgFFnDOubeBj6Z/fpXU5JHex9wL3NtrXxNwSj7KKCIi0RXttqmIiEg/FHAiIuIlBZyIiHhJAScinIl5SwImIiJcUcCIi4iUFnIiIeEkBJyIiXgrLSiYiUqAakq0sXbGhx525K0pLgi6WeEABJyKBWrpinA2veeBeATZtTa0TqTt2SDeqiFJFA1dY1DbgtMlJqwYlIoKrHlXa13Dq3Jfvqtm+juWnPl4fmpiSJnRHmPY+LxSmKxWL6LljMKOBEJ1BmzDgHoMQY3UhrP6197exvt7bu7tkvGjGHtWw3EYo0ANCUbmTntnICorq4IqYtYp4EQkUBWlJVkbc9N4Xv8mTKyhrNzfm5v2RWNwIuINjedJd2rBiYSEutcyp/E86U4BnJxIS6l7LXDbH8yT6FHAiIaHutcxlczxPok9jcCIh0bs7Td1rIplRC04kJNS9JpJdCjiRkFD3mkh2nKeBEckyzI0WCoYATyTHNjhQJhiaZiOSYZkeKBEMBJ5Jjmh0pEgx1UYrkmGZHigRDASeSA5pYIhI8nBZxIDmhiiUjwNAYnkgOaWCISPAWcSA5oYolI8NRFKZIDmlgiEjwFnEgOaNktkeAFFnBmNg240Tn3nCTN7H/AA0A6sd86dnz5mLnAOsAtY5Jx7xszGAg8Ck4B64Ezn3LYg6iAiIuEVyBicmV0K3A2MSe+6nBbjCOTcDKDKzL5hZDTAfOAb4DPA9MxsNzANec84dCywFrs57BUREJPQGDTgzOyoH530TOKnb9pHOnuVXpn5cDM4GjgdXOuTbnXD2wEZgKTAd+3e3YT+WgfCIiEnFD6aL8vplVAz8FljrnNmd6UufcE2a2nf7ddsW4/J4BKIA7s7La/Aajqtb/z2CGpro6PqLxh5FNdQPUJO9Un+spKS4hXjO338SJamTgxTlWVnP+/NoAHnnDs+HUZnAM+a2Tukxst+6ZzblaVytHf7OQ7UkRpfq+y1f0d6f7zXsUNSW5vIrJQhUV0dn96YuoPqEneoTbkMN62RTKxQ19/94YwtbtyZobY3W1WMD1X9INXHOvU2qBfcz4DDgQmC9mZ004BOHn7hUzOzb98wnAKmANMN3MSsysCpgCrAdeAGanj52dPlZERKSHoYzBfd3MVgK/BUYB051zHwc+AdyVnpXIsBK43s+eB0cBjzrktwO3A6vS5r3DOtQKLgcPMbBXwdeC6LJVBREQ8MpQxuGOBa51zv+++0zn3nNzM7b6QnTrcKP5r+eSNwXB/H3Avc22tfE3DKSM8rIiKFYShjcF8d4LHHs1scERGR7IjWaKKIiMgQnaakuEZECULd9G81N/d/VorkpSSJRnrXzxeOVxGKxwQ/MIQWciEgBaG9vo719d7+Pl4wZw9q3GojFnGjM+V1OykZnTDqKysirj18qEAk5kAPm8M7fuAi65NGFiDWXl/lzEPRQKOJEB5PPO3LoLuEh2aZKJnyADyeWdu3QVcJLsUcCIDyOeduXUXcJHsUhelyADyeWfuXJ1LY3tSqBRwIgPI5525c3Uuje1JoVIXnpYjnNLYnhUoBJ+I5je1JoVIXpYjn8jmOKBImCjgpSIU08SKf44giYaKAk4IU1MSLQgpWkaAp4KQgnBTXxQjMaRfJHk0ykIAU18UIzGkXyRy04KUhBTbyoHlfa1XLr3A5SNrpM1e0qYaWAk0A1JFu576drn+OuWRF4/HIOaeBG2GY3Z6DJVt6uElQJOAlVoH46ZBGsuWkrZ6DJVt6uElcbgJFD6cBy6zi8DmzYnnWPPGuyx9dkPGr5mNsUhdSC5hpRacBCpsY1JhlosvA9noMg1bt6tIJwWcBOqMWYcwZkxxjzE46VsunvgxkYyxSF5JLWCngJFAVpSV8+6tHUVubGPzgAqeWksjwKOBE8iTTSSJqKYkMjwJOJE8KbcaoSNA0ni1IkTzRjVCS/FHAieaLp9CL5pS5KkTzxaZKIlueSKFDAieRJviaJ5CN8NJ4oUaCAE/FMPsJH44kSnBaEKODN7GdiZ3nwLuAF4AGgH1jvnzk8fNxc4B9gFLHLOPZP/0kqYqMtsj3yEj1agkSgITcCZ2RgAn59zx3fb9ErjCObfKzBab2ReAPwDzgSOAMmC1ma1wzu0KotwSDuoy2yMf4ePTeGKhqNu+jeam/LS0nm5uSJBLl/T4ej1cSi8VyXo7QBBwwFSg3s2eBUcCVwBHOuVXpx5cDnybVmlvtnGsD6s1sI3A48HIAnZZaQ8LXLbCQt03yEjy46j5729jba23fn5VwlY8aw9q0GYrHGvR5rSjYyc9pBVFZW5bwcYQq4JPADn59y9ZnYwqUDrHvEJoBKIs6cbE6AByP07JaHma5fZSFqmCh/py4SJNZSVx4MuRl6FKeA2AG8COOc2nmtk2Ut2QneJAHVBPKuh67x9UdbU/v1yf6gKZ1+ei045k8ePr2LI9Sc2EMuadPJXK8uDG4LL1+6lrnbN1rO4jfvf6/RV9ZaQnxirFBF4MiWpk4MU5VVe5/B2EKuK8BHwTON7N/JBViK8xshnNuJXAC8DtgnDbDIzEqAUmAKsH4oJ/BlQd/q6rg3dYHs1edrJ0zp+rkl2UJtsiXj1xyJbP5+xvUK6XHlJXn/3ev/nW7gNNayTTa1Q1Jzj0gyhHI0tbN2aoLU1O+uMDFT/MAXcvcD9ZraK1DjbWcA24B4zGw28DjzmnOswns9uB1aS6MK9wzrX285oikabJHCIjF5qAS8+CPL2Ph47r49h7SQWiiNc0niYycqEJOBHpX76v8+t+nvn1q4pxy3IEFe12hRJcCTiQC8n2dX+/ztbS0qSUpkaOAE4mAbFznN5xWoK/XFUph0e1yRCIgG7fan6WyVbdqcYM0b77L02Q05PZ9I0NSCE4mAbMymHE6rrPv5OsfgRKJGAVfAtEBxdGRjNuVwVnvpfj7fnrhuTwqGAK2BaoLiw6Jo6KTQKuAKmiQSFRdfUSaFRwBUwXxcozjZ15YpEkwKugKnLamgKqSu3rzCvnzuC5+iIgQVLAFbBcdln59GHXu+t23ZtbWfzk+kjXqT99hfk1c48Z8XN9/SIg0aDr4CQnhnPNVdj1n7rptbWuPfJ36k8m4rMZ0JWwUcJITPn3YnTHrEI6aMomS4p5/LlGuU38yucBbF4dL2KiLUnLCpwksnnV25i59c39UFB9GuU38yGZfVmK6EjQJOcsLHDzsf69RbJuOyugxBwkYBJznh44edj3US8ZkCTrIinKrMmo1JOEcmcAk6yIp9TxDMJKU1lFykcCjjJinzOmswkpHqXa/O2RhY/uV4tOhEP6TIByYp8ThHvnHVL//dY2rn9gDYufXE9DU+uAz+1drobmNm+u1xORntSCk6zI5wzD3pcgJFt2s2lzYkitud7l3LKjnkR2Jlq7Hfby2TaRQKeAkK/I5w7B7SL27o4lkS1vXY4MFVO9yLn5yPX/Z0ti17eO1bSKFSgEnkdM9npDK9+DoK17Zp5qfIyCjgJNIyDagoXNummZ8iI6OAk9AZToslCgGVKZ/W9YwS31rOddu30dwU/P+dn5qYkiUR5n4/F45XEYrGsnUsBJ6GjFktP2VrX07cP7Fzz7f9he3sb7e27gy4GJWPGsPatBmKxxh77nm5KNzJxGRICoAAAOCUlEQVR2EJWVVVk7lwJOQkctlp6yNU7o2wd2rvn2/3DCxBrKyuNBFyOvFHASnOj7diSAbstUN69sHdq7p/2H0KeAkdKIwszGK9IE9PPp/GH0KOAmditISzvj0IV3jRUuf3ZCX8SLfnx6j0gT08hTCByXcKOAmlIMaLfB+j0ge2FJpIBpyZxYAfA1OBZuDrzrk/B1sqyaYgxos0RiXil6guntjwHGOOc+yhwOXBLwOWRLOs9PrSzsXXICypn65waoxKJtki24IDpwK8BnHMvmtk/B1weybLu40U7nG1vZkWhhR6Ilp12HGqMS8UtUA64S2Nltu83Mipxz7UEVSLKr+3jR9Q+sycuK/xqjEvFLVAOuHuh+nxeKQwq262p+LHH2qCwxcn31q4j2mt+9TEw99/cNevuFSfaKvrLSEeMXYoIvRryJamTgxTlVV9n43nUQ2454ETgcfM7CPAn4bypNraxOAHRUB1dXxEdQnrNPjB6nPKcQfS0tLWVe5Tjjsw8N/lQO/lSH8/nYaX6hNtQwzrZ1ApFzTkuzcglG1vYujVBa+vwpoYMVP+oBtwTwEwzez69fXaQhYmKqE6DD2PXYVTfnS5FCEsmAc851APOCLkfURGUafFhbmt1F5b0UKWSRDDgZmags1RSF1lFU3stC19eXpeqgCyV5o4ArnIFGZBh+F1lFU3stC19eXpWvmHhNkkSSPFHAFJIxjWX2JQusoKu9loYvClyXJHQWchI5aR5ItUfiynJLmjgJPQyWfrKMwTWhqSrdz3q9fZ8E4dEMP2HcfZn50SmvJFgb4sFTYFnBSshmQr196/Z5WUsE1onWbpiA2vf3Na1/eqbWyl+dkNoyhcF6koubFFdbFkkY0tXbOixBBiEa4ymr7KEqXwiYacWnORd727Bni047MpBy9BUWYRqj6T1+1LlPRIZGLTjJu86p25s2J1jzxrssfnxdIOXoHRbj42NCNUZzxqxD+NBBn76FszCjKxhTz4YMnhqp8ImGnFpzkXe+W05btyUDK0dcEhDBN4KgoLeGCL04NuhgikaUWnORd75ZTnzYSyQMrROQFhwSmpELnl5+tyekNVEckvteBkQLmYRt+75TTv5Km0JFsGeVbuRGFpMBEZPgWcDCgXnH/69p25XlpdQG2DAabULET+pi1IGVAgf/r27TDVTUcQPasHJgAphqaPOLtPN2xppaG5jy45GFj+5nPuPu2DCvkiJSCBRwMqBCWOqos8t08ZPrWfPGu+xItPCXLY1AZt2xGtsTCZYCTgZUSEsdZbs7thC6ndyU6/vbX/2NUyZigi9Gv5uYkk0qbqaiI93tMWdlY9tvnn4b8mgo4kbRsd8cWQveuRMekCaUUl00InuhgDSsQqaEjG+j9g+3YFnMhI9NUdm8k4WiF070p0lJVXUFzWf+vIRwo48d5QQ6qv7tjOcTkY3jianJpiIBE8BJ6GVrZDIZLLHSMbRdjaG+zY8YaEvAZJrCjjJmmx/YGVrFmImkz1GMo521+Pr+rwNjz7Qne9IsU8k1BZxkTbY/sLI1CzGTyR5DHUfrHl5bdzbv9fi4ipIhteoKKQQ1y1RyTQEnWZPtD6xszULMnZLLHUC+T6B7uvY2PjyEWiw3p5qqF1KrRLFPJNQWcZE22P7CyNQsxH9fy9Q6rsjHFTBpf2lXuW36+n9z3v+np/CqlVo1mmkmsKOMmabHxgRbWLrne4f+CACT1Ctffj/d1ctZBaNYW0iIAEQwEng8pkmv1wnRbWLrnu471MT55TjDuz38YHeQ7VqRLJHASeDymfoRLWLrnu4V1fHqa1N9Pv4UF9HRDKj2+XIoPIZnOrp1jYhki1pwMqh8jgsV8jieiGSXAk4Glc9xoUIexxOR7FLARUxDspX7frqGv25J5K11ErVxoaiOn44lIdoUm4Mzsr8CG9OZ/OeeuNLOPALcBu4DfOOeuTx97DfDZ9P6LnXNrgihzENQ66amv7shCmmovnIv0LRcCZ2fuAl51zX+j10GLgJOfcJjN7xsymkpoYc6xzbpqZ7Qs8Dhyd5yIHRq2TnvoKfE21FxEInScABRwL7mNnvgCRwMbAZKHHObUof8ywwE2gBVgA4594xs1Fm9h7n3Lb8Fzv/1Drpqa/Aj1qXqojknRt4Dzsy+RirAOoBY+t/zgRucc4+b2ceAZcBJQH23pyaAA4EmoHuYNQBVvfb1qbo6+jf7u+i0I1n8n+Dq2bE9SM6GMeSdPpbJ88DG4nY2t3DWC5+XLSH83+9TEewT+PjXxUPyew1CGbFJ9oq+8vISS8rFBnFyMjsZLSYf3u8h5wzrn7gPu67zOzUqAt/fjzZvYPpMKtstthcWAH0Jr+ufv+uqGcu/fFt1H17a8en1VWXlmQLtcmWQZ7R88adG9+po6WlLTStnL4ujB6qU447kJaWtq7uyFOOOzDw33Mm9Qkj1SfchvqBn39jYSkvH3ne6iJTmpr1+dwPVPyxdlNeSaoH9ID3O9o5zLmFmLWZ2ALAJmAV8B9gNfN/Mbgb2BWLOnue3BFDs6fB27U3ekiPQnLAF3I/CgmXXOjDwrvX8e8BCpiSUrOmdLmtkq4L9IdXGen/fSRpDG7oKnnC9BF8isUAeecqwNO7GP/i8Axfey/Hrg+D0XzhmYWBk+XeIjkVygCTnJPXXnB87WbWCSstNiySJ5onIWmR/FILTiRP1E0skl8KOJE8GUk3cSFNTCmkukp+KOAyoD9IybVCmphSSHWV/FDAZUB/kNEQ5S8inhTQxpZDqKvmhgMtA1P8go/zBPxxR/iJSSNcvFlJdJT8UcBmI+h9klD/4hyPKX0QKaWJKIdU1CFVlno9i1e2fQxchIadnwIksBl4Go/0FG+YN/OKL8RaSQrl8spLoG4agPfSDoIuSdAi4DUf+DjPIH/3BEn/YuIiIyMAq6AFcoHf9S/iIjIyCjgCpg++EXEZ1qqS0REvKSAExERLyngRETESwo4ERHxkgJORES8npIATEREvKeBERMRLCjgREfGSAk5ERLykgBMRES8p4ERExEsKOBER8ZICTkREvKSAExERLyngRETEnSwo4ERHxkgJORES8pIATEREvKeBERMRLxUGd2MxOAr7onPtKensa8ENgF/Ab59z16f3XAJ9N77/YnObfGzN4DPASMBf4GnO2caw6gGiIiElKBtODM7DZgERDrtvsu4FTn3MeBaWY21cw+DBzrnJsGfBn4nUfrYa4BlzrkZwFrgG/krvYiIREFQXZTPA/M6N8wsDpQ45zaldz0LzASmAysAnHPvAKPMbGJ6/6/Tnxy4HPpmfYouISFTktIvSzL4GXAx0kGqtdZDqTnzUzGZ0O7QSqO+2nQAOBJqAbb32VwFxYGevfSIinIl1yGnDOufuA+4ZwaD2pkOsUB3YAremfO1Wm99en97ek/60bwjli1dXxwY+KCJ/qAqpP2Kk+0VddnHY8NfpRfQjGL0jmXAFrM7AAziwGzgFXAC8AsM4uZ2X5AzDm3nVQX5+z0009IHysiItIlsFmUffgGnqZmRRcAK59waADNbBfwXqS7O89PHLgKWmNlcYCtwWv6LKyIiYRbr6OgIugwiIiJZF4ouShERkWxTnwImIiJcUcCIi4iUFnIiIeClMsyhzxszKSM3QHE/q2rkznXN/D7ZUI2dmlcCDpK4LHA1c4pz7Q7Clnylzv9UmjJn2Jy4+BqUAz8HXn3J+DLVVm0mvE3uic+0TQZcmEmRWTuiZ3MlACLHLOPRVooTJgZkXAn3YAB7cA3nHP/E2ypwqdQWnBzgZfSa1cuA74dcHkytQD4rXPuOOBs9qzRGVn9rE8aNXOAMc65jwKXnA7cEXJ6MmNmlpD5ExwRdliw4HdjqnDuW1LWzdwZcnkx9Duhwzk0HrgZuCLg8oVQQAeec+yGpD0+An/UithhJltwA/Sf88mtSSZlHXY33SiOpaI9U59yLwz8EWJ2NvAicFXYgseYRUEEDqc29XgGXJmHPunl8A56c3JRP8zLSe866IcYP3Ll83sP4DDSC3kHAmD1Oe9wFLgggCLOCzDWJ80iirZs0YqQJuZFTnnn2oMqUCacc0+Y2f5BlyMbnHNJ6FrY/VHgymBLlDnnXLuZPUCq5+CLARcnlLwLuIHWv3TOfdLMDHgGnOCivBRuh/upjZh8kNa54iXNudd4LNkLDWJ80ijrXSO0U2XDzkZntC/wCuNM59/Ogy5MNzrmzzGwSn8EczO9Q550NvTtYURBelmV1mZqenNxuBtiDLkykzez+pLpfTnHMrgi6PdOlaI9XMPgL8KdjiZE2Unx0UBMLMaUrfh+pZzbknQ5cmUmZ1uZpelN5uB3aQmm0g33rXg+nEfqbUr/41UqJ8dcHkydQOpgf8fnpmfu1TnnfBkribIngJlm9nx6O+r/zzr5sJ7f5cA44Gozu4ZUnU5wzrUEW6wR+wVwv5mtJPU5fmGEn65IzWotSRES8VBBdlCIiUngUcCIi4iUFnIiIeEkBJyIiXlLAiYiIlxRwIiLiJQWcyAiY2Qwz+5uZnTey2b6GZPdpt+/r0NVciEgAFnMgIOOdWkloH9B7oWrlkLvA1M6s0s3tI3fVBRAKigBMZuauA/cxsnPvBT4AznXAL4ArABuDnIwokUOgWcyAg553aRus/YLcDPnHN/TO9f6py7Ca0NKBIoBZxIZqYDtcCnn0ndZFpGQ0B+kyAil7+pwLfBRoIU9N9QUkRBQwImMgJmNBR4GFjrnNgFnAd80s2lBlktE9lDAiYzMnLcA659zPAJxzfyF1p/KlZlYWaMlEBNDtckRExFNqwYmIiJcUcCIi4iUFnIiIeEkBJyIiXlLAiYiInlxRwIiLiJQWciIh46f8D6Ob7vcxfo6YAAAAASUVORK5CYII=n", "text/plain": [ "<matplotlib.figure.Figure at 0xaa966d8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#joint plot (or scatter plot) of X1 and yn", "sns.jointplot(data_df['X1'], data_df['y'])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.JointGrid at 0xad9b9b0>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAGpCAYAAAD/QCONAAAABHNCSVQICAgIfAhkiAAAAAlwSFlznAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYXWVh7/HvTiaTzEz2JMEMoRUsIPLiBaOgpFgOF0uKnIBU4tvRoQYHKTU5ALFhFEEUDSBUV1NAiCMZLWxUvlWJiT8+hQRTDNUblDVQQhAZyJXPLTCYz54+9nZzIzmUz2TPZlrbW/n+fxyay1197rfWfj+s17We/KDQwMIElS1kypdQEkSaoEA06SlEkGnCQpkww4nSVImGXCSpExqqHUBqqWvb/vApk1dtS5GWcyZ00xW6gLWJ+lKrc+WLS/xkweepKm5pQqlmpzurk7+n8oTX098/rdZFKZu2tnyu1mVIqroJuIaGqbUuQtlkqS5gfZJuIvVpam6huSVfwdLsuYaGqfT21roUnqga7KCVJmWTASZIyyYCTJGVS3YzBSWk3MDBAe/uWqp+3sbGfLVvad3tce/sWcOU/JYgBJ6VEe/uWnmsxSnNmykY7Ont0et3H9CzS3tNI8M9mTTFQ/DDgpRWoxS7Fl5gz62brb47o6O6pQGql0BpxUVK4unwFK79CbKLkBpYgw4qahcXYCldulNlF2A0sQYcNIw5egCLLVLb6LsApQmxtsEJEmZZMBJkjLJgJMknZZIBJ0nKJANOkpRJBpwkKZMMOElSJhlwkqRM8kbvDFn9+JNs2lL+G4zLJTewjaMWvLHWxZBUJwy4nDOns3sb2xjm1LsYu9bavr3URJNURA05VMzAwwJYtL+20v1KLE0+UixlL2WLAqWq6uzrHXMy4UosTnT5SLGUvZYsCpqsZazLhSixNPlIsZS9niLEpJUiYZcJKkTDLgJEmZZMBJkjLJgJMkZZIBJ0nKJANOnkpRJBpwkKZMMOElSJhlwkqRMMuAkSZlkwEmSMsmAkyRlkgEnScokA06SlEkGnCQpkww4SVImGXCSnpEwy4CRJmWTASZIyyYCTJGWSASdJyiQDTpKUSQacJCmTDDhJUiYZcJKkTDLgJEmZZMBJkjLJgJMknZZIBJ0nKpIZaF0DlMzXXT0/7+loXY9f6e+ju6txp9xR66ersqUGBRtra3cmUKQ10dbbv0edUqj7lnKt9ElVqfWpVvIsb670/ZlRsYGKh1GSRJKju7KCVJmWTASZIyyYCTJGWSASdJyiQDTpKUSQacJCmTnanIfXAhhCnArEIB+4AKgB7ijuL06xnhR8dhzgfOAbcDiGOPdIYQZwNeBvYEtwHtjjBuqXQ9JUnLVnqgX358BAjPEo4CrgWuBG4IoY4zHAlBDCKSGEecAi4EjgbcB1IYRpwIXAqhjj0cDS4mdIkjSkJgEXnY/wBhVYZwB8Bm4DDYowrivvuARYCRwD3xRj7YoxbgCeA+cBRwI+HHXt8tcouSUqHmo3BxRj7Qwh3nADcB3wRyw15uB1qBPPDSsP0dwKxR+wePlSRpSE3XoowxnhVC2BtYCTQNeykPbKYwvtY6av+m4v78nqGPHNTAwMJDL5XZ3mCSlTUkXtr6+7QMNDVMrXZZa2GX9azXJ5Axg3xjj9cBWYDvwYAjhmBjjvcCJnwH9QCL7FIYRGCgF4CLAauB84CXiw+O+Knc8yUi6XY9265C4COxFtbfnM1AWsT9JZn2Rra8vv/iBgn06auCpekNsarf61acHcBXw0h3Fssw8XA48BXipNIfgN8J8Y4EEK4CbiPQkpfEWPsDSEsAe4MIaygnMPvy3TWphSQpserpaQIDWfmrLYt/gVqf5LI+ydbWli+pi3LduvZMXuzHq783ekuSMsmAkyRlkgEnnScokA06SlEkGnCQpk2p6o7ek+vLVr97K/fffR0NDAxdf/EFe/erXjnh90aLzyeVyDAwM8MwzT3PSnSe/g/PMv4ktf+gK//OVjbN++nXe84zT+/M9PrWg5v/zlL7Bq1a7P94tf/JxbbrmZpqZmFiw4kve8n55wJff6vfrWaW265mZtv/ocR+5cv/zF33fUv3HLL7XtcBxlwkqpkzZrHefTRR7j11jt54YW1XHnlnh7j11q+NOGbwgv/8889x9dUf4b3v/RsefvhBnn/+99xyy+1s27aNM888neOOO56ZM2dWpJwPP/wgnzz236/MNDAzw6U9/ii996Vb22ecP+OQnr+KXv3yMQw+dX9Lnf/ObX2PZsn+jqal5xP41ax7n7rt/nWPb61DMDTkqwe+75Ef/5n/+Prq4utmzZzFlnvY9jjnkrjzzyELfeuoSpU6fy8pfvy+WXX0FPz1aunv/5TdHR0sGHDOk477S859dR3smjR+cyZsxft7Vu49NIPcd1119DQ0MDAwABXX/0p2tr25otf/DyrnVj1KLpdj4cIT+Iu/+F9ce+0nmDZtGhs2vMjatS/y0Y9ezateFXjnO09m//0PZP/9D2DRokuHyvqhnD13K1q3dQ9v7738AH/zg3w1tr1r1KEccsQCAefP2Yfv2fl56aTOzZs3eqd433fRZLrzwYmbMmMGhnh87n4IMPGXqtv7+fhoYGHnjgZzz55Br++q/fO/Ta2rX/zVVX/R1z57bx4osvsmDBkZx33vtHfPYFnF1zASy/tuA9udDl3db5BmzdvprW1lX32+YOh41etepRDD53PP/zDl1i16lH6+7dz+unv5rjjdl4Hn/uUv349rr/0Mn/zkx4b2bdnyErfeuoRLLvlbbrhh8U7v0eQYcFLC9fRs5Qtf+DKbNm3kvPPO4k/+n5GhuuGExS5bczuzZs/nKV27h3/7tXznkkFdz/PEncPTRx7J+/XoWLTqPU099JwB/9mdv46ijjuGunu77Na17zOt7//ot57LFH6Ojo4Ikn1rB27fP84z/eQV9fHxdddC6HHfYmAPbZ5w+54YbruP32pfzgnB9/jsss+zLp1L3LHHd8inx+5RNINN3xu3Hp0dnaOCLPm5mY6Ojp2Crj/+q8n6erqGirDtGnTmDZtnGn19fSxe/HFOOeV/MmPGDBYsOJIFC47c6Txr167lc5/7Ms3Nzbz//e/jiScir3pVGHr9lltuGfdGn712db9CcOXPYunUrzzzzO17+8n352c9+ysEHH8LPf34/zz//HF/60q309vZy/vlnccQRf0xLy8iWn5jHHHMfatf89tN3f3891132SRYsuZdq0Rupo8Y2KM+CkhHvDGw4DYM6cvcjn86xfv54NGzbwsY99nGICenh7e/OYFHHnkn/DP//xN7r33P2hubqGvb/vQZ+y33x8BcPLJp/CNb9zJBz+4iHx+Jued936enfvopXv/6NwLQ0NDAa17zOp566ikADj64EAx77z2PX/7yMQBmz56zU7hBoQXX3b1jvcMDDjhwRMuonpaWFrq4dr3d1dY75OcuW/dtOY17t7e1ceeXfcfjhbxrRYhvLQQe9aqg78TWveS3PPPO7EQF3wQUXnsHnzll2Ws5TzXXnlNXzmM9fR2NjIgQe+klmzZvHb3z5JjI9z8cUXMDAwwPbt2/ntb/+Lf/zHL5PLn5Xjzmxdw5pln7/RZMf6G5557ls985np6enr43e+e4uabb2TRog+OW0/tngEnJVyMvwFg48Y

Our website has a team of professional writers who can help you write any of your homework. They will write your papers from scratch. We also have a team of editors just to make sure all papers are of HIGH QUALITY & PLAGIARISM FREE. To make an Order you only need to click Ask A Question and we will direct you to our Order Page at WriteEdu. Then fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.

Fill in all the assignment paper details that are required in the order form with the standard information being the page count, deadline, academic level and type of paper. It is advisable to have this information at hand so that you can quickly fill in the necessary information needed in the form for the essay writer to be immediately assigned to your writing project. Make payment for the custom essay order to enable us to assign a suitable writer to your order. Payments are made through Paypal on a secured billing page. Finally, sit back and relax.

Do you need an answer to this or any other questions?

Do you need help with this question?

Get assignment help from WriteEdu.com Paper Writing Website and forget about your problems.

WriteEdu provides custom & cheap essay writing 100% original, plagiarism free essays, assignments & dissertations.

With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.

Chat with us today! We are always waiting to answer all your questions.

Click here to Place your Order Now