05 Oct Define a topological space X that is compact and show that it is compact using the definition of compactness and/o
Week 7
Respond to one of the following two prompts:
i) Define a topological space X that is compact and show that it is compact using the definition of compactness and/or relevant theorems.
ii) Define a topological space that is not compact and show that it is not compact using the definition of compactness and/or relevant theorems.
In addition look at your classmates’ topological spaces. Verify their compactness or non-compactness.
For example: Every closed and bounded interval [a, b] in ℝ with the standard topology is compact.
Proof: Let Obe an open cover of [a, b]. We need to show that there is a finite subcover of [a, b]. Suppose that there is no finite subcover of [a, b].
Consider dividing the interval [a, b] in half into two half-intervals [a,a+b2] and [a+b2, b]. One of these half-intervals does not have a finite subcover from O; otherwise, [a, b] would have a finite subcover. Let [a1, b1] be the half-interval that does not have a finite subcover from O. We can repeat this process of dividing in half, and let [a2, b2] be the half-interval of [a1, b1] that is not finitely-coverable. Then, we get an infinite collection of half-intervals [an, bn] that are not finitely-coverable.
We have that for each n=1, 2, 3, …:
i) [an, bn] ⊂ [an+1, bn+1]
ii) bn-an = b−a2n
iii) [an, bn] is not finitely-coverable
By Cantor's Nested Intervals Theorem (Theorem 2.11 of Croom), ∩∞n=1[an,bn] is nonempty. Let x be in this intersection. Then, x∈[a, b]. Since O is an open cover of [a, b], there is an open set O in O such that x∈O. Since O is open in ℝ, there is an open interval (c, d)⊂O containing x; in particular, there is an epsilon-neighborhood (x−ε, x+ε)⊂(c, d)⊂O containing x.
Let N be sufficiently large such that b−a2N < ε. Since x lies in ∩∞n=1[an,bn], x lies in [aN, bN]. Note that [aN, bN]⊂(x−ε, x+ε) because bN−aN=b−a2N < ε. So [aN, bN]⊂(x−ε, x+ε)⊂O, which implies that [aN, bN]⊂O. That is, [aN, bN] is covered by one open set in O; in other words, [aN, bN] is finitely-coverable. This contradicts the fact that all of the half-intervals [an, bn] are not finitely-coverable.
We can conclude that O has a finite subcover. Therefore, every open cover of [a, b] has a finite subcover, and [a, b] is compact.
-
Screenshot76.png
-
Screenshot73.png
-
Screenshot77.png
-
Screenshot81.png
-
Screenshot82.png
-
Screenshot83.png
-
Screenshot71.png
-
Screenshot75.png
-
Screenshot89.png
-
Screenshot80.png
-
<img src='
Our website has a team of professional writers who can help you write any of your homework. They will write your papers from scratch. We also have a team of editors just to make sure all papers are of HIGH QUALITY & PLAGIARISM FREE. To make an Order you only need to click Ask A Question and we will direct you to our Order Page at WriteEdu. Then fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.
Fill in all the assignment paper details that are required in the order form with the standard information being the page count, deadline, academic level and type of paper. It is advisable to have this information at hand so that you can quickly fill in the necessary information needed in the form for the essay writer to be immediately assigned to your writing project. Make payment for the custom essay order to enable us to assign a suitable writer to your order. Payments are made through Paypal on a secured billing page. Finally, sit back and relax.
Do you need help with this question?
Get assignment help from WriteEdu.com Paper Writing Website and forget about your problems.
WriteEdu provides custom & cheap essay writing 100% original, plagiarism free essays, assignments & dissertations.
With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.
Chat with us today! We are always waiting to answer all your questions.