Chat with us, powered by LiveChat For this assignment, you must analyze a dataset and provide the ?results of your analysis. You should not interpret the output a - Writeedu

For this assignment, you must analyze a dataset and provide the ?results of your analysis. You should not interpret the output a

For this assignment, you must analyze a dataset and provide the  results of your analysis. You should not interpret the output at this  stage. Please refer to the data file in the week 1 resources. 

In the video game dataset provided, you can explore two categorical  or grouping variables (independent variables), which include the type of  player (police officer or thief) and advertising period (advertising  period or no advertising period).  You can explore the data to determine  if the number of video game visits and/or the amount of visit time  (dependent variables) are different for the levels of the two  independent variables.  If the data are normally distributed, you could  use independent samples t-tests as your inferential model to compare the  two levels of each independent variable (you would run two separate  t-tests).  If you analyze both independent variables simultaneously with  their interaction term, you will use a two-way analysis of variance.     

Your paper should consist of the following components:

  1. Describe the problem and state the hypotheses to be tested.
  2. Include the appropriate descriptive statistics and visuals in order  to describe the characteristics of the data and include a written  summary of the data.
  3. Address all relevant statistical assumptions and provide a written summary of the findings.
  4. Describe the results of the inferential analyses implemented to address each hypothesis.

Length: 6 pages, not including title and reference pages

References: Include a minimum of 6 scholarly resources.

The completed assignment should demonstrate thoughtful consideration of the ideas and concepts presented in the course by providing new thoughts and insights relating directly to this topic. The content  should reflect scholarly writing and current APA standards and provide a plagiarism report

Master Scoring Summary

ID Initiative Name Score
Economic Fit/ Attractiveness (70) Ability To Execute / Business Fit (30) Confidence Rating
1 Initiative 1 38 22 90
2 Initiative 2 44 14 55
3 Initiative 3 52 28 80
4 Initiative 4 44 10 75
5 Initiative 5 60 18 80
6 Initiative 6 38 28 75
7 Initiative 7 50 12 65
8 Initiative 8 50 12 65
9 Initiative 9 52 28 80
10 Initiative 10 48 26 65
11 Initiative 11 48 22 60
12 Initiative 12 48 22 60
13 Initiative 13 50 28 75
14 Initiative 14 52 28 70
15 Initiative 15 58 26 85
16 Initiative 16 42 24 90
17 Initiative 17 58 28 90
18 Initiative 18 54 28 95
19 Initiative 19 54 28 95
20 Initiative 20 54 28 100
21 Initiative 21 50 26 100
22 Initiative 22 46 26 80
23 Initiative 23 58 28 100
24
25

[CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] 38 44 52 44 60 38 50 50 52 48 48 48 50 52 58 42 58 54 54 54 50 46 58 22 14 28 10 18 28 12 12 28 26 22 22 28 28 26 24 28 28 28 28 26 26 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Economic Fit/Attractiveness Ability to Execute/Business Fit

,

TIM-7101_Video_Game_Data

Date Visits VisitTime TotalTime Game Advertising
Friday 0 0 0 Police Yes
Saturday 1 0.76 0.76 Police Yes
Sunday 0 0 0 Police Yes
Monday 0 0 0 Police No
Tuesday 0 0 0 Police No
Wednesday 0 0 0 Police No
Thursday 0 0 0 Police No
Friday 0 0 0 Police No
Saturday 0 0 0 Police No
Sunday 0 0 0 Police No
Monday 6 1.33 7.95 Police Yes
Tuesday 5 2.98 14.9 Police Yes
Wednesday 0 0 0 Police Yes
Thursday 7 2.4 16.83 Police Yes
Friday 0 0 0 Police Yes
Saturday 0 0 0 Police Yes
Sunday 1 0.82 0.82 Police Yes
Monday 8 1.93 15.45 Police Yes
Tuesday 3 1.33 3.99 Police No
Wednesday 0 0 0 Police No
Thursday 0 0 0 Police No
Friday 0 0 0 Police No
Friday 1 1.68 1.68 Theif Yes
Saturday 1 0.67 0.67 Theif Yes
Sunday 0 0 0 Theif Yes
Monday 1 1.16 1.16 Theif No
Tuesday 0 0 0 Theif No
Wednesday 1 2.88 2.88 Theif No
Thursday 0 0 0 Theif No
Friday 0 0 0 Theif No
Saturday 0 0 0 Theif No
Sunday 0 0 0 Theif No
Monday 8 1 7.97 Theif Yes
Tuesday 3 1.41 4.22 Theif Yes
Wednesday 0 0 0 Theif Yes
Thursday 10 2.85 28.45 Theif Yes
Friday 0 0 0 Theif Yes
Saturday 1 4.44 4.44 Theif Yes
Sunday 1 1.23 1.23 Theif Yes
Monday 6 2.15 12.89 Theif Yes
Tuesday 0 0 0 Theif No
Wednesday 0 0 0 Theif No
Thursday 0 0 0 Theif No
Friday 0 0 0 Theif No

,

Scoring Definitions

Growth Opportunity Scoring Definitions
Evaluation Criteria Higher Attractiveness / Fit (5 Points) Medium Attractiveness / Fit (3 Points) Lower Attractiveness / Fit (1 Point)
Attractiveness Revenue Potential 3 Year revenue potential of $1,000,000 or more 3 Year revenue potential of $999,999 – $400,000 3 Year revenue potential of $399,999 or less
Pretax Potential More than 40% Between 30% – 40% Less than 30%
Strategic Alignment Fits a key strategic growth initiative / lever and it fits our culture / business model Fits a strategic growth initiative / lever Unclear fit with current business strategies
Client Need Unmet need validated by potential customers; unmet need with customer request for service Unmet need identified and confirmed (not with customer); met need with customer openess to service Unmet need may exist but has not been confirmed; met need with customer not intersted in service
Customers Targets customer inside domain of interest, and decision maker is in a function we are very familiar with Targets customer inside our domain of interest and the decision maker is unfamiliar with us Targets customer outside our domain of interest
Time to Revenue Less than 6 months to initial revenue 7- 18 months to initial revenue Greater than 18 months to initial revenue
Investment Required (non employee) Minor (0 – 10% of revenue potential) Moderate (10-20% of revenue potential) Significant (>20% revenue potential)
Progressive Cutting Edge – Viewed as progressive by the target customer Leading Edge – Viewed as "second" to the market but considered progressive Standard – Effective and proven but not progressive
Ability to Execute / Business Fit Capabilities – Process Does not require any significant additions to, or enhancement of, our existing processes Requires enhancement of existing processes, but does not require new processes Depends on process that do not exist in the business today
Capabilities – Technology Tools Does not require any significant additions or upgrades to current tools Requires substantial upgrades to existing tools, but no new tools Requires new technology tools
Capabilities – Skillsets Only requires existing leadership, management, and operational skillsets Requires new skillsets / talent from a leadership/management or an operational perspective (not both) Requires the addition or new skillsets / talent from both a leadership/management and an operational perspective
Competitors Competitive set is limited or does not exist (less than 2) Competitive set is moderate (2-6) Competitive set is is very robust for our currents offering(s) (7+)
Pricing Model Pricing terms and mechanics are consistent with current offerings and familiar to the target customer set Pricing terms and mechanics are different from current offerings or unfamiliar to the target customer set (not both) Pricing terms and mechanics are different from current offerings and will be unfamiliar to the target customer set

Template

Growth Opportunity Scoring Sheet
Score Confidence
Growth Opportunity Name:
Instructions: For each of the evaluation criteria listed, please provide a score in the 'Score' column based on the criteria provided in the 'Scoring Definitions' tab
as well as a brief rationale for why you entered each score
Evaluation Criteria Weight Score (1,3,5) Weighted Score Rationale for Score Score (10/6/2) Weighted Score
Economic Fit / Attractiveness Revenue Potential 10% 0.0 0 0.0
Pretax Potential 10% 0.0 0 0.0
Strategic Alignment 10% 0.0 0 0.0
Client Need 10% 0.0 0 0.0
Customers 10% 0.0 0 0.0
Time to Revenue 5% 0.0 0 0.0
Investment Required 5% 0.0 0 0.0
Progressive 10% 0.0 0 0.0
Total 70% 0.0 0.0 0.0
Ability to Execute / Business Fit Capabilities – Process 5% 0.0 0 0.0
Capabilities – Technology 5% 0.0 0 0.0
Capabilities – Skillsets 10% 0.0 0 0.0
Competitors 5% 0.0 0 0.0
Pricing Model 5% 0.0 0 0.0
Total 30% 0.0 0.0 0.0
Total Score 100% 0.0 0.0

,

Evidence Based Library and Information Practice 2007, 2:1 

32

Evidence Based Library and Information Practice     Feature Article    A Statistical Primer: Understanding Descriptive and Inferential Statistics      Gillian Byrne  Information Services Librarian  Queen Elizabeth II Library  Memorial University of Newfoundland  St. John’s, NL , Canada  Email: [email protected]      Received: 13 December 2006    Accepted: 08 February 2007      © 2007 Byrne. This is an Open Access article distributed under the terms of the Creative Commons  Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,  distribution, and reproduction in any medium, provided the original work is properly cited.   

Abstract    As libraries and librarians move more towards evidence‐based decision making, the data  being generated in libraries is growing. Understanding the basics of statistical analysis is  crucial for evidence‐based practice (EBP), in order to correctly design and analyze research  as well as to evaluate the research of others. This article covers the fundamentals of  descriptive and inferential statistics, from hypothesis construction to sampling to common  statistical techniques including chi‐square, correlation, and analysis of variance (ANOVA).   

 

Introduction  Much of the research done by librarians,  from bibliometrics to surveys to usability  testing, requires the measurement of certain  factors.  This measurement results in  numbers, or data, being collected, which  must then be analyzed using quantitative  research methods. A basic understanding of  statistical techniques is essential to properly  designing research, as well as accurately  evaluating the research of others.  

This paper will introduce basic statistical  principles, such as hypothesis construction  and sampling, as well as descriptive and  inferential statistical techniques. Descriptive  statistics describe, or summarize, data, while  inferential statistics use methods to infer  conclusions about a population from a  sample.    In order to illustrate the techniques being 

Evidence Based Library and Information Practice 2007, 2:1 

33

               Great Job         Lousy Job                            If you accept the job    Have a great experience  Waste time & effort 

  If you decline the job  Waste an opportunity  Avoid wasting time & effort 

    Figure 1. Illustration of Type I & II errors.      described here, an example of a fictional  article will be used.  Entitled Perceptions of  Evidence‐Based Practice: A Survey of Canadian  Librarians, this article uses various  quantitative methods to determine how  Canadian librarians feel about Evidence‐ based Practice (EBP).  It is important to note  that this article, and the statistics derived  from it, is entirely fictional.     Hypothesis  Hypotheses can be defined as “untested  statements that specify a relationship  between two or more variables” (Nardi 36).  In social sciences research, hypotheses are  often phrased as research questions. In plain  language, hypotheses are statements of  what you want to prove (or disprove) in  your study.  Many hypotheses can be  constructed for a single research study, as  you can see from the example in Fig. 1.    In research, two hypotheses are constructed  for each research question. The first is the  null hypothesis.  The null hypothesis  (represented as H0) assumes no relationship  between variables; thus it is usually phrased  as “this has no affect on this”.  The  alternative hypothesis (represented as H1) is  simply stating the opposite, that “this has an  affect on this.” The null hypothesis is  generally the one constructed for scientific  research.    Type I & II Errors  Anytime you make a decision in life, there is  a possibility of two things going wrong.   Take the example of a job offer. If you 

decide to take the job and it turned out to be  lousy, you would have wasted a lot of time  and energy. However, if you decided to pass  on the job and it was great, you would have  wasted an opportunity.  It’s best illustrated  by a two by two box (Fig. 1).     It is obvious that, despite thorough research  about the position (speaking to people that  work there, interview process, etc.), it is  possible to come to the wrong conclusion  about the job.  The same possibility occurs in  research. If your research concludes that  there is a relationship between variables  when in fact there is no relationship (i.e.,  you’ve incorrectly assumed the alterative  hypothesis is proven), this is a Type I error.  If your research concludes that there is no  relationship between the variables when in  fact there is (i.e., you’ve incorrectly assumed  the null hypothesis is proven), this is a Type   II error. Another way to think of Type I & II  errors is as false positives and false  negatives. Type I error is a false positive,  like concluding the job is great when it’s  lousy.  A Type II error is a false negative;  concluding the job is lousy when it’s great.     Type I errors are considered by researchers  to be more dangerous.  This is because  concluding there is a relationship between  variables when there is not can lead to more  extreme consequences.  A drug trial  illustrates this well.  Concluding falsely that  a drug can help could lead to the drug being  put on the market without being beneficial  to the public.  A Type II error would lead to  a promising drug being left off the market, 

Evidence Based Library and Information Practice 2007, 2:1 

34

which while serious, isn’t considered as dire.  To help remember this, think of the  conservative nature of science. Inaction (and  possibly more testing) is less dangerous  than action.  Thus, disproving the null  hypothesis, which supposes no relationship,  is preferred to proving the alternative  hypnosis.    There are many safety features built in to  research methodology which help minimize  the possibility of committing both errors,  including sampling techniques and  statistical significance, both of which you  will learn about later.    Dependent and Independent Variables  Understanding hypotheses help you  determine which variables are dependent  and which are independent (why this is  important will be revealed a bit later).   Essentially it works like this:  the dependent  variable (DV) is what you are measuring,  while the independent variable (IV) is the  cause, or predictor, of what is being  measured.    In experimental research (research done in  controlled conditions like a lab), there is  usually only one hypothesis, and  determining the variables are relatively  simple. For example, in drug trials, the  dosage is the independent variable (what  the researcher is manipulating) while the  effects are dependent variables (what the  researcher is measuring).    In non‐experimental research (research  which takes place in the ‘real world’, such as  survey research), determining your  dependent variable(s) is less straightforward.   The same variable can be considered  independent for one hypothesis while  dependent for another. An example – you  might hypothesize that hours spent in the  library (independent variable) are a  predictor of grade point average (dependent  variable). You might also hypothesize that 

major (independent variable) affects how  much time students spend in the library  (dependent variable). Thus, your hypothesis  construction dictates your dependent and  independent variables.    A final variable to be aware of in  quantitative research is the confounding  variable (CV).  Also know as lurking  variables, a confounding variable is an  unacknowledged factor in an experiment  which might affect the relationship between  the other variables.  The classic example of a  confounding example affecting an  assumption of a relationship is that murder  rates and ice cream purchased are highly  correlated (when murder rates go up, so  does the purchase of ice cream?). What is  the relationship?  There isn’t one; both  variables are affected by a third,  unacknowledged variable: hot weather.     Population, Samples & Sampling  Although it is possible to study an entire  population (censuses are examples of this),  in research samples are normally drawn  from the population to make experiments  feasible. The results of the study are then  generalized to the population.  Obviously, it  is important to choose your sample wisely!    Population  This might seem obvious, but the first step is  to carefully determine the characteristics of  the population about which you wish to  learn.  For example, if your research  involves your university, it is worthwhile to  investigate the basic demographic features  of the institution; i.e., what is the percentage  of undergraduate students vs. graduate  students?  Males vs. females?  If you think  these are groups you would like to compare  in your study, you must ensure they are  properly represented in your sample.    Sampling Techniques  Probability Sampling 

Evidence Based Library and Information Practice 2007, 2:1 

35

Probability sampling means that each  member of the population has an equal  chance of being selected for the survey.   There are several flavors of probability  sampling; the common characteristic being  that in order to perform probability  sampling you must be able to identify all  members of your population     Random sampling is the most basic form of  probability sampling. It involves identifying  every member of a population (often by  assigning each a number), and then  selecting sample subjects by randomly  choosing numbers. This is often done by  computer programs.    Stratified random sampling ensures the  sample matches the population on  characteristics important to a study. Using  the example of a university, you might  separate your population into graduate  students and undergraduate students, and  then randomly sample each group  separately. This will ensure that if your  university has 70% undergraduates and 30%  graduates, your sample will have a similar  ratio.    Cluster sampling is used when a population  is spread over a large geographic region.   For

Our website has a team of professional writers who can help you write any of your homework. They will write your papers from scratch. We also have a team of editors just to make sure all papers are of HIGH QUALITY & PLAGIARISM FREE. To make an Order you only need to click Ask A Question and we will direct you to our Order Page at WriteEdu. Then fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.

Fill in all the assignment paper details that are required in the order form with the standard information being the page count, deadline, academic level and type of paper. It is advisable to have this information at hand so that you can quickly fill in the necessary information needed in the form for the essay writer to be immediately assigned to your writing project. Make payment for the custom essay order to enable us to assign a suitable writer to your order. Payments are made through Paypal on a secured billing page. Finally, sit back and relax.

Do you need an answer to this or any other questions?

Do you need help with this question?

Get assignment help from WriteEdu.com Paper Writing Website and forget about your problems.

WriteEdu provides custom & cheap essay writing 100% original, plagiarism free essays, assignments & dissertations.

With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.

Chat with us today! We are always waiting to answer all your questions.

Click here to Place your Order Now