Chat with us, powered by LiveChat When do you personally stop using a product, a service, or something that brings you convenience, after you have learned that it has seriously harmed people along the way as it was being constructed?? 2) What message do we give to the next generation when we 'let it go' and find reasons why our lack of direct involvement justifies the use of the product/service, etc. What are the material consequences of letting things go? 3) What is the biblical response to acquiescing to something when it is wrong, even when you are not directly involved in the wrongdoing? 4) What were the surprises you found in the PEF AI 2017 report? 5) What overall conclusions do you draw from this? 600 words, APAPEFAIreportSeptember2017WEB.pdf - Writeedu

When do you personally stop using a product, a service, or something that brings you convenience, after you have learned that it has seriously harmed people along the way as it was being constructed?? 2) What message do we give to the next generation when we ‘let it go’ and find reasons why our lack of direct involvement justifies the use of the product/service, etc. What are the material consequences of letting things go? 3) What is the biblical response to acquiescing to something when it is wrong, even when you are not directly involved in the wrongdoing? 4) What were the surprises you found in the PEF AI 2017 report? 5) What overall conclusions do you draw from this? 600 words, APAPEFAIreportSeptember2017WEB.pdf

 Article – https://time.com/6247678/openai-chatgpt-kenya-workers/

The article on Kenya was selected here to exemplify how important it is to question, investigate, understand, and acknowledge a level of acquiescence that the users of a product or a service exhibit towards the irreparable damage done to people in the name of progress and convenience. This could be said of any product and any service out there that has become ubiquitous in society today. Please address the following:

1) When do you personally stop using a product, a service, or something that brings you convenience, after you have learned that it has seriously harmed people along the way as it was being constructed? 

2) What message do we give to the next generation when we 'let it go' and find reasons why our lack of direct involvement justifies the use of the product/service, etc. What are the material consequences of letting things go?

3) What is the biblical response to acquiescing to something when it is wrong, even when you are not directly involved in the wrongdoing?

4) What were the surprises you found in the PEF AI 2017 report?

5) What overall conclusions do you draw from this?

600 words, APA

 

   ​ ​​ ​  

Artificial​ ​Intelligence:  Practice​ ​and  Implications​ ​for  Journalism

 

September​ ​2017 

 

  Mark​ ​Hansen*   Meritxell​ ​Roca-Sales**  Jon​ ​Keegan**  George​ ​King**    *​ ​Brown​ ​Institute​ ​for​ ​Media​ ​Innovation   **​ ​Tow​ ​Center​ ​for​ ​Digital​ ​Journalism         

Platforms​ ​and​ ​Publishers:​ ​Policy​ ​Exchange​ ​Forum​ ​I  June​ ​13,​ ​2017​ ​|​ ​Columbia​ ​Journalism​ ​School 

Organized​ ​by​ ​the​ ​Tow​ ​Center​ ​for​ ​Digital​ ​Journalism   and​ ​the​ ​Brown​ ​Institute​ ​for​ ​Media​ ​Innovation 

 

Artificial​ ​Intelligence:​ ​Practice​ ​and​ ​Implications​ ​for​ ​Journalism ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​1 

 

 

Executive​ ​Summary 2 

Introduction 4 

Discussion​ ​I:​ ​Al​ ​in​ ​the​ ​Newsroom 7 

Case​ ​Studies:​ ​‘A​ ​Spectrum​ ​of​ ​Autonomy’ 8 

Data 9 

Challenges​ ​for​ ​Publishers:​ ​Large​ ​Newsrooms​ ​and​ ​Small 9 

Discussion​ ​II:​ ​Technology 10 

Automation​ ​and​ ​Personalization​ ​of​ ​Stories 10 

Commenting​ ​Systems​ ​and​ ​Audience​ ​Engagement 12 

Proprietary​ ​Versus​ ​Open​ ​Algorithms 13 

Challenges​ ​and​ ​Limitations 13 

Discussion​ ​III:​ ​Algorithms​ ​and​ ​Ethics 14 

Transparency​ ​and​ ​Accountability 14 

Editorial​ ​Decisions​ ​and​ ​Bias 15 

Ethical​ ​Use​ ​of​ ​Data 16 

Concluding​ ​Remarks 17 

    The​ ​Policy​ ​Exchange​ ​Forums​ ​are​ ​a​ ​critical​ ​component​ ​of​ ​the​ ​Tow​ ​Center’s​ ​Platforms​ ​and  Publishers​ ​research​ ​project.​ ​In​ ​these​ ​sessions,​ ​participants​ ​representing​ ​both​ ​the​ ​platforms​ ​and  publishing​ ​sides​ ​of​ ​the​ ​news​ ​industry​ ​can​ ​engage​ ​on​ ​issues​ ​related​ ​to​ ​the​ ​ethical​ ​and​ ​civic  values​ ​of​ ​journalism.​ ​The​ ​forum​ ​focuses​ ​on​ ​the​ ​relationships​ ​between​ ​technology,​ ​business,  journalism,​ ​and​ ​ethics,​ ​and​ ​brings​ ​together​ ​diverse​ ​stakeholders​ ​to​ ​discuss​ ​current​ ​issues​ ​and  surface​ ​potential​ ​new​ ​ones.    The​ ​project​ ​is​ ​underwritten​ ​by​ ​the​ ​John​ ​D.​ ​and​ ​Catherine​ ​T.​ ​MacArthur​ ​Foundation,​ ​with  additional​ ​support​ ​by​ ​the​ ​John​ ​S.​ ​and​ ​James​ ​L.​ ​Knight​ ​Foundation,​ ​the​ ​Foundation​ ​to​ ​Promote  Open​ ​Society,​ ​and​ ​The​ ​Abrams​ ​Foundation.         

 

Artificial​ ​Intelligence:​ ​Practice​ ​and​ ​Implications​ ​for​ ​Journalism ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​2 

 

Executive​ ​Summary    The​ ​increasing​ ​presence​ ​of​ ​artificial​ ​intelligence​ ​and​ ​automated​ ​technology​ ​is​ ​changing  journalism.​ ​While​ ​the​ ​term​​ ​​artificial​ ​intelligence​ ​dates​ ​back​ ​to​ ​the​ ​1950s,​ ​and​ ​has​ ​since​ ​acquired  several​ ​meanings,​ ​there​ ​is​ ​a​ ​general​ ​consensus​ ​around​ ​the​ ​nature​ ​of​ ​AI​ ​as​ ​the​ ​theory​ ​and  development​ ​of​ ​computer​ ​systems​ ​able​ ​to​ ​perform​ ​tasks​ ​normally​ ​requiring​ ​human​ ​intelligence.  Since​ ​many​ ​of​ ​the​ ​AI​ ​tools​ ​journalists​ ​are​ ​now​ ​using​ ​come​ ​from​ ​other​ ​disciplines—computer  science,​ ​statistics,​ ​and​ ​engineering,​ ​for​ ​example—they​ ​tend​ ​to​ ​be​ ​general​ ​purpose.     Now​ ​that​ ​journalists​ ​are​ ​using​ ​AI​ ​in​ ​the​ ​newsroom,​ ​what​ ​must​ ​they​ ​know​ ​about​ ​these  technologies,​ ​and​ ​what​ ​must​ ​technologists​ ​know​ ​about​ ​journalistic​ ​standards​ ​when​ ​building  them?    On​ ​June​ ​13,​ ​2017,​ ​the​ ​Tow​ ​Center​ ​for​ ​Digital​ ​Journalism​ ​and​ ​the​ ​Brown​ ​Institute​ ​for​ ​Media  Innovation​ ​convened​ ​a​ ​policy​ ​exchange​ ​forum​ ​of​ ​technologists​ ​and​ ​journalists​ ​to​ ​consider​ ​how  artificial​ ​intelligence​ ​is​ ​impacting​ ​newsrooms​ ​and​ ​how​ ​it​ ​can​ ​be​ ​better​ ​adapted​ ​to​ ​the​ ​field​ ​of  journalism.​ ​The​ ​gathering​ ​explored​ ​questions​ ​like:​ ​How​ ​can​ ​journalists​ ​use​ ​AI​ ​to​ ​assist​ ​the  reporting​ ​process?​ ​Which​ ​newsroom​ ​roles​ ​might​ ​AI​ ​replace?​ ​What​ ​are​ ​some​ ​areas​ ​of​ ​AI​ ​that  news​ ​organizations​ ​have​ ​yet​ ​to​ ​capitalize​ ​on?​ ​Will​ ​AI​ ​eventually​ ​be​ ​a​ ​part​ ​of​ ​the​ ​presentation​ ​of  every​ ​news​ ​story?    Findings   

– AI​ ​tools​ ​can​ ​help​ ​journalists​ ​tell​ ​new​ ​kinds​ ​of​ ​stories​ ​that​ ​were​ ​previously​ ​too  resource-impractical​ ​or​ ​technically​ ​out​ ​of​ ​reach.​ ​While​ ​AI​ ​may​ ​transform​ ​the​ ​journalism  profession,​ ​it​ ​will​ ​enhance,​ ​rather​ ​than​ ​replace,​ ​journalists’​ ​work.​ ​In​ ​fact,​ ​for​ ​AI​ ​to​ ​be​ ​used  properly,​ ​it​ ​is​ ​essential​ ​that​ ​humans​ ​stay​ ​in​ ​the​ ​loop.  

– There​ ​is​ ​both​ ​a​ ​knowledge​ ​gap​ ​and​ ​communication​ ​gap​ ​between​ ​technologists​ ​designing  AI​ ​and​ ​journalists​ ​using​ ​it​ ​that​ ​may​ ​lead​ ​to​ ​journalistic​ ​malpractice. 

– Readers​ ​deserve​ ​to​ ​be​ ​given​ ​a​ ​transparent​ ​methodology​ ​of​ ​how​ ​AI​ ​tools​ ​were​ ​used​ ​to  perform​ ​an​ ​analysis,​ ​identify​ ​a​ ​pattern,​ ​or​ ​report​ ​a​ ​finding​ ​in​ ​a​ ​story. 

– While​ ​the​ ​intersection​ ​of​ ​AI​ ​and​ ​data​ ​offers​ ​new​ ​kinds​ ​of​ ​opportunities​ ​for​ ​reader  engagement,​ ​monetization,​ ​and​ ​news​ ​feed​ ​personalization,​ ​with​ ​this​ ​comes​ ​the​ ​challenge  of​ ​finding​ ​a​ ​balance​ ​between​ ​creating​ ​echo​ ​chambers​ ​and​ ​remaining​ ​committed​ ​to  journalism’s​ ​public​ ​service​ ​mission.  

– Ethical​ ​use​ ​and​ ​disclosure​ ​of​ ​data​ ​(how​ ​information​ ​from​ ​users​ ​is​ ​collected,​ ​stored,​ ​used,  analyzed,​ ​and​ ​shared)​ ​is​ ​a​ ​fundamental​ ​issue​ ​that​ ​journalists​ ​need​ ​to​ ​confront. 

 

Artificial​ ​Intelligence:​ ​Practice​ ​and​ ​Implications​ ​for​ ​Journalism ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​3 

 

– The​ ​potential​ ​for​ ​AI​ ​to​ ​augment​ ​the​ ​work​ ​of​ ​the​ ​human​ ​data​ ​journalist​ ​holds​ ​great  promise,​ ​but​ ​open​ ​access​ ​to​ ​data​ ​remains​ ​a​ ​challenge.  

-​ ​​ ​​ ​​ ​Artificial​ ​intelligence​ ​is​ ​unpredictable;​ ​we​ ​don’t​ ​feel​ ​that​ ​confident​ ​predicting​ ​where​ ​the  biggest​ ​problems​ ​will​ ​crop​ ​up.​ ​Vigilance​ ​on​ ​the​ ​part​ ​of​ ​both​ ​technologists​ ​and​ ​journalists  is​ ​necessary​ ​to​ ​keep​ ​these​ ​systems​ ​in​ ​check. 

  Recommendations   

– Investment​ ​in​ ​training​ ​editors​ ​and​ ​reporters​ ​is​ ​crucial.​ ​As​ ​AI​ ​tools​ ​enter​ ​newsrooms,  journalists​ ​need​ ​to​ ​understand​ ​how​ ​to​ ​use​ ​new​ ​resources​ ​for​ ​storytelling—not​ ​only  ethically,​ ​but​ ​also​ ​efficiently. 

– Developing​ ​and​ ​promoting​ ​the​ ​use​ ​of​ ​shared​ ​guidelines​ ​among​ ​journalists​ ​and  technologists​ ​around​ ​ethical​ ​use​ ​of​ ​data​ ​and​ ​public​ ​disclosure​ ​of​ ​methodology​ ​is​ ​a​ ​must.  Existing​ ​AI​ ​tools,​ ​like​ ​chatbots​ ​and​ ​commenting​ ​systems,​ ​should​ ​be​ ​used​ ​as​ ​opportunities  for​ ​thinking​ ​about​ ​how​ ​to​ ​apply​ ​editorial​ ​values​ ​and​ ​standards​ ​to​ ​the​ ​early​ ​stages​ ​of​ ​new  journalistic-specific​ ​technology. 

– For​ ​custom-built​ ​AI,​ ​which​ ​is​ ​too​ ​expensive​ ​for​ ​smaller​ ​operations​ ​to​ ​afford,​ ​newsrooms  should​ ​consider​ ​investing​ ​time​ ​in​ ​partnerships​ ​with​ ​academic​ ​institutions. 

– There​ ​needs​ ​to​ ​be​ ​a​ ​concerted​ ​and​ ​continued​ ​effort​ ​to​ ​fight​ ​hidden​ ​bias​ ​in​ ​AI,​ ​often  unacknowledged​ ​but​ ​always​ ​present,​ ​since​ ​tools​ ​are​ ​programmed​ ​by​ ​humans.​ ​Journalists  must​ ​strive​ ​to​ ​insert​ ​transparency​ ​into​ ​their​ ​stories,​ ​noting​ ​in​ ​familiar​ ​and​ ​non-technical  terms​ ​how​ ​AI​ ​was​ ​used​ ​to​ ​help​ ​their​ ​reporting​ ​or​ ​production.   

 

   

 

Artificial​ ​Intelligence:​ ​Practice​ ​and​ ​Implications​ ​for​ ​Journalism ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​4 

 

Introduction  By​ ​Mark​ ​Hansen,​​ ​​director​ ​of​ ​Columbia’s​ ​Brown​ ​Institute​ ​for​ ​Media​ ​Innovation    Our​ ​conversation​ ​at​ ​June’s​ ​forum​ ​began​ ​where​ ​these​ ​discussions​ ​often​ ​do:​ ​with​ ​the​ ​idea​ ​that​ ​we  can​ ​enhance​ ​human​ ​ability​ ​through​ ​computation.​ ​Our​ ​specific​ ​focus​ ​was​ ​on​ ​journalism​ ​and​ ​tasks  associated​ ​with​ ​reporting,​ ​writing,​ ​and​ ​designing​ ​impactful​ ​visualizations​ ​and​ ​other​ ​journalistic  “experiences.”      First​ ​and​ ​foremost,​ ​computation,​ ​as​ ​a​ ​tool,​ ​extends​ ​our​ ​ability​ ​to​ ​perform​ ​basic​ ​calculations—that’s  the​ ​old​ ​magic​ ​of​ ​spreadsheets​ ​and​ ​the​ ​success​ ​of​ ​computer-assisted​ ​reporting.​ ​But​ ​advances​ ​in  computation​ ​also​ ​bring​ ​the​ ​ability​ ​to​ ​recognize​ ​new​ ​data​ ​types,​ ​new​ ​digital​ ​objects​ ​that​ ​are​ ​open  to​ ​computational​ ​techniques​ ​of​ ​analysis.​ ​And​ ​with​ ​new​ ​data​ ​types​ ​come​ ​new​ ​kinds​ ​of​ ​questions  about​ ​the​ ​world​ ​around​ ​us.​ ​More​ ​and​ ​more​ ​of​ ​our​ ​world​ ​is​ ​being​ ​rendered​ ​in​ ​digital​ ​data,​ ​so​ ​that  (in​ ​journalistic​ ​terms)​ ​our​ ​data​ ​sources​ ​are​ ​becoming​ ​more​ ​diverse—and​ ​the​ ​information​ ​we​ ​can  draw​ ​from​ ​them,​ ​deeper​ ​and​ ​more​ ​interesting.​ ​It​ ​almost​ ​begs​ ​for​ ​a​ ​kind​ ​of​ ​aesthetic​ ​that​ ​prizes  new​ ​computational​ ​voices​ ​in​ ​the​ ​same​ ​way​ ​we​ ​value​ ​a​ ​new​ ​human​ ​source​ ​with​ ​a​ ​unique  perspective​ ​on​ ​a​ ​story.     To​ ​ground​ ​what​ ​we​ ​mean​ ​by​ ​“enhancing​ ​our​ ​abilities”​ ​and​ ​the​ ​shift​ ​to​ ​new​ ​data​ ​types,​ ​let’s  consider​ ​how​ ​standard​ ​journalistic​ ​practice​ ​has​ ​changed​ ​when​ ​it​ ​comes​ ​to​ ​wading​ ​through​ ​piles  of​ ​documents,​ ​perhaps​ ​returned​ ​by​ ​a​ ​FOIA​ ​request.​ ​With​ ​machine​ ​learning,​ ​we​ ​can​ ​pore​ ​over  thousands​ ​upon​ ​thousands​ ​of​ ​documents​ ​in​ ​a​ ​kind​ ​of​ ​mechanistic​ ​reading.​ ​“Reading”​ ​at​ ​this​ ​scale  was​ ​not​ ​possible​ ​a​ ​couple​ ​decades​ ​ago,​ ​not​ ​without​ ​a​ ​lot​ ​of​ ​human​ ​effort.​ ​Now,​ ​instead​ ​of​ ​taking  in​ ​text​ ​line-by-line​ ​and​ ​word-by-word—as​ ​you​ ​may​ ​now​ ​be​ ​doing​ ​with​ ​this​ ​text—machine​ ​learning,  or​ ​more​ ​specifically​ ​Natural​ ​Language​ ​Processing,​ ​helps​ ​us​ ​to​ ​create​ ​summaries​ ​of​ ​texts​ ​or  divides​ ​them​ ​into​ ​groups​ ​with​ ​common​ ​features​ ​(called​ ​clusters).     Italo​ ​Calvino​ ​provides​ ​a​ ​simplified​ ​view​ ​of​ ​this​ ​in​ ​​If​ ​on​ ​a​ ​Winter’s​ ​Night​ ​a​ ​Traveler​.​ ​A​ ​character  from​ ​the​ ​book​ ​named​ ​Ludmilla​ ​explains​ ​that​ ​she​ ​has​ ​a​ ​computer​ ​program​ ​that​ ​reduces​ ​a​ ​text​ ​to  individual​ ​words​ ​and​ ​their​ ​frequencies.​ ​From​ ​here,​ ​she​ ​can​ ​much​ ​more​ ​easily​ ​“read”:     

What​ ​is​ ​the​ ​reading​ ​of​ ​the​ ​text,​ ​in​ ​fact,​ ​except​ ​the​ ​recording​ ​of​ ​certain​ ​thematic​ ​re-occurrences,  certain​ ​insistences​ ​of​ ​forms​ ​and​ ​meanings?     In​ ​a​ ​novel​ ​of​ ​fifty​ ​to​ ​a​ ​hundred​ ​thousand​ ​words​ ​.​ ​.​ ​.​ ​I​ ​advise​ ​you​ ​to​ ​observe​ ​immediately​ ​the​ ​words  that​ ​are​ ​repeated​ ​about​ ​twenty​ ​times.​ ​Look​ ​here​ ​.​ ​.​ ​.  

   blood,​ ​cartridge​ ​belt,​ ​commander,​ ​do,​ ​have,​ ​immediately,​ ​it,​ ​life,​ ​seen,​ ​sentry,​ ​shots,​ ​spider,  teeth,​ ​together,​ ​you​ ​.​ ​.​ ​.  

  

 

Artificial​ ​Intelligence:​ ​Practice​ ​and​ ​Implications​ ​for​ ​Journalism ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​5 

 

Don’t​ ​you​ ​already​ ​have​ ​a​ ​clear​ ​idea​ ​what​ ​it’s​ ​about?     With​ ​computation,​ ​we​ ​extend​ ​our​ ​abilities​ ​to​ ​“read”​ ​thousands​ ​or​ ​millions​ ​of​ ​documents.​ ​(Franco  Moretti​ ​at​ ​Stanford​ ​formalizes​ ​this​ ​difference,​ ​contrasting​ ​“distant,”​ ​or​ ​machine-mediated​ ​reading,  with​ ​“close,”​ ​or​ ​line-by-line,​ ​reading.)​ ​These​ ​new​ ​abilities,​ ​however,​ ​necessarily​ ​change​ ​how​ ​we  think​ ​about​ ​collections​ ​of​ ​documents​ ​and​ ​the​ ​knowledge​ ​we​ ​pull​ ​from​ ​them—our​ ​abilities​ ​extend,  but​ ​also​ ​our​ ​perspective​ ​changes.     As​ ​with​ ​text​ ​sources,​ ​digital​ ​images,​ ​audio,​ ​and​ ​video​ ​are​ ​also​ ​all​ ​now​ ​open​ ​to​ ​computation.​ ​In​ ​the  same​ ​way,​ ​ou

Our website has a team of professional writers who can help you write any of your homework. They will write your papers from scratch. We also have a team of editors just to make sure all papers are of HIGH QUALITY & PLAGIARISM FREE. To make an Order you only need to click Ask A Question and we will direct you to our Order Page at WriteEdu. Then fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.

Fill in all the assignment paper details that are required in the order form with the standard information being the page count, deadline, academic level and type of paper. It is advisable to have this information at hand so that you can quickly fill in the necessary information needed in the form for the essay writer to be immediately assigned to your writing project. Make payment for the custom essay order to enable us to assign a suitable writer to your order. Payments are made through Paypal on a secured billing page. Finally, sit back and relax.

Do you need an answer to this or any other questions?

Do you need help with this question?

Get assignment help from WriteEdu.com Paper Writing Website and forget about your problems.

WriteEdu provides custom & cheap essay writing 100% original, plagiarism free essays, assignments & dissertations.

With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.

Chat with us today! We are always waiting to answer all your questions.

Click here to Place your Order Now